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Dielectric properties of an ultra-cold weakly magnetized
charged Bose gas
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School of Physics, University of Melbourne, Parkville, Victoria 3052, Australia

Received 12 June 1997

Abstract. With a new asymptotic expansion for the specific Kummer function that appears
in the response theory of low-temperature quantum plasmas in an external magnetic field, the
dielectric properties of the charged Bose gas, namely its collective and transverse modes and
screening properties, are evaluated in the weak-field limit.

The interacting Bose gas is a complex and still incompletely solved problem in many-body
physics, which may serve as a model for several real physical systems from superconductors
[1] and liquid He4 superfluid [2] to the interiors of exotic astrophysical objects such as white
dwarfs, neutron stars and possibly supernovas [3]. One of the most studied examples of the
interacting Bose gas is the weakly interacting, charged Bose gas (CBG), first investigated
by Foldy [4]. Although much simpler than many of the interacting Bose systems, the
CBG continues to be a subject of great interest, since its behaviour is expected to be
similar to the more complicated systems possessing long-range interactions [5]. Recently,
it has attracted much interest because of its role in the bipolaron theory of high-temperature
superconductivity [2, 6].

In contrast to the work of others [7, 8], who have studied the system in the high-
temperature classical Boltzmann region, this article aims to present both the longitudinal
and transverse dielectric response properties of the CBG in a weak, homogeneous, external
magnetic field atT = 0 K, when the system is in a total quantum state. Previously, Hore
and Frankel (HF) [9] made an attempt to solve this difficult fundamental problem, but
their study, which was primarily concerned with the longitudinal properties of the system,
failed to liberate the appropriate physics for two reasons. The first was that they evaluated
the conductivity tensor via the self-consistent random-phase-approximation (RPA) method
developed by Harris [10]. The problem with this approach was that it not only omitted a
term necessary for the study of the transverse properties of the system, but it rendered a
very awkward form for the tensor. A superior approach was to adapt the Harris method to
evaluate the more elegant polarization tensor following Witteet al [11] and then to use this
tensor’s symmetry properties to obtain simplified forms for the various response functions
of the system as in [12].

The second, more important, reason why HF failed to liberate such longitudinal
properties as the dispersion relation for the collective modes and the static screening
potential was that they were unable to develop appropriate asymptotic expansions in the
weak magnetic field limit for the particular confluent hypergeometric function or Kummer
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function that appears in the response theory of the magnetized CBG atT = 0 K. This
Kummer function, which is related to the incomplete gamma function, appears in the
response theory of the magnetized CBGs more illustrious Fermi counterpart, the magnetized
degenerate electron gas (DEG) and also in the response theory of magnetized anyon gases
[13]. Thus, a weak-field asymptotic expansion for this Kummer function is not only required
to evaluate the dielectric properties of the CBG atT = 0 K, but will also be useful in
evaluating the properties of the magnetized DEG. In addition, since the asymptotic expansion
is dependent upon the ratio of the cyclotron frequency to the plasma frequency being less
than unity, the physical properties presented here are also valid for high densities and strong
magnetic fields. For strong magnetic fields at ultra-cold temperatures the finite temperature
distribution function of a Bose gas can be replaced by itsT = 0 K form [14]. Thus, the
results presented here should be valid for high-density systems not necessarily restricted to
T = 0 K.

The longitudinal dielectric response function for a CBG in an external homogeneous
magnetic fieldB for arbitrary temperature [12] is

εL(q, ω) = 1+ 2mωce
2

h̄q2V 1/3
e−z∗

∑
n,n′,pz

F (n, pz)αn,n′(z∗)

×(D(En′,pz−h̄qz , En,pz )−D(En,pz , En′,pz+h̄qz )) (1)

whereF(n, pz) is the distribution function for the bosons,D(x, y) = (h̄ω+ x − y + iη)−1,
z∗ = q2

⊥/2β
2 (β2 = eB/h̄c) and the Landau energy level,En,pz , in terms of the cyclotron

frequencyωc(eB/mc) is

En,pz = p2
z/2m+ (n+ 1/2)h̄ωc. (2)

In equation (1) forn > n′, αn,n′(z) = γn,n′(z)Ln−n′n′ (z)2 with γn,n′(z) equal ton′!zn−n
′
/n! and

Lnn′(z) representing a Laguerre polynomial, whilen andn′ are interchanged whenn < n′.
This interchanging ofn and n′ results from the symmetry properties of the polarization
tensor. It is implicitly understood that the limitη→ 0+ is to be taken here. The iη appears
in accordance with the standard Landau procedure [15] of replacingω by ω+ iη, but since
there is no singularity in the denominators atT = 0 K, it can be discarded. Hence, all
modes in the magnetized CBG are zero-damped atT = 0 K.

For photon propagation parallel to the magnetic field, i.e.q = qz, the electromagnetic
modes are no longer conveniently described in terms of linear polarization, but in terms of
circularly polarized waves [16]. For this situation the dielectric tensor becomes diagonal
with the components given by

εr(q, ω) = 1− ω
2
p

ω2
+ 2e2ω2

c

ω2V 1/3

∑
n,pz

F (n, pz)((n+ 1)

×D(En+1,pz−h̄q , En,pz )− nD(En,pz , En−1,pz+h̄q )) (3)

εl(q, ω) = 1− ω
2
p

ω2
+ 2e2ω2

c

ω2V 1/3

∑
n,pz

F (n, pz)(nD(En−1,pz−h̄q , En,pz )

−(n+ 1)D(En,pz , En+1,pz+h̄q )) (4)

and

ε(q, ω) = 1− ω
2
p

ω2
+ 2e2ωc

ω2V 1/3h̄m

∑
n,pz

F (n, pz)((pz − h̄q/2)2D(En,pz−h̄q , En,pz )

−(pz + h̄q/2)2D(En,pz , En,pz+h̄q )). (5)



Dielectric properties of a Bose gas 737

Equations (3) and (4) correspond to the response functions for left- and right-circularly
polarized transverse modes while equation (5) is the longitudinal dielectric response function
with q⊥ = 0. Due to a transcription error equations (3) and (4) appear in reverse order in
[12].

For the case of photon propagation perpendicular to the magnetic field, i.e.qz = 0 or
q⊥ = q with the photons chosen to propagate in thex-direction, the transverse response
functions were found to be

ε1(q, ω) = 1− ω
2
p

ω2
+ e2ω2

ce−z∗

z∗ω2V 1/3h̄

∑
pz,n,n′

(n− n′)2αn,n′ (z∗)

×F(n, pz)(D(n′h̄ωc, nh̄ωc)−D(nh̄ωc, n
′h̄ωc)) (6)

ε2(q, ω) = 1− ω
2
p

ω2
+ e2ω2

ce−z∗

z∗ω2V 1/3

∑
pz,n,n′

βn,n′(z∗)

×F(n, pz)(D(n′h̄ωc, nh̄ωc)−D(nh̄ωc, n
′h̄ωc)) (7)

and

ε3(q, ω) = 1− ω
2
p

ω2
+ 2e2ω2

ce−z∗

m2ω2V 1/3

∑
pz,n,n′

p2
zαn,n′(z∗)

×F(n, pz)(D(n′h̄ωc, nh̄ωc)−D(nh̄ωc, n
′h̄ωc)) (8)

where the plasma frequency is given byω2
p = 4πe2N/mV andN is the total number of

particles in the system. In equation (7),βn,n′(z) = γn,n′(z)(nL
n−n′−1
n′ (z) − zLn−n′+1

n′ (z))2

for n > n′ while n andn′ are interchanged whenn < n′. Equations (6)–(8) represent the
diagonal components of the dielectric tensor. One off-diagonal transverse response function
also exists which is given by

εx(q, ω) = e2ω2
ce−z∗

z∗ω2V 1/3

∑
pz,n,n′

κn,n′(z∗)F (n, pz)(D(nh̄ωc, n
′h̄ωc)−D(n′h̄ωc, nh̄ωc)). (9)

In equation (9) κn,n′(z) = γn,n′(z)(nL
n−n′−1
n′ (z)(zLn−n

′
n′ (z) − nLn−n

′−1
n′ (z)) − z2Ln−n

′
n′

(z)Ln−n
′+1

n′−1 (z)) for n > n while n andn′ are interchanged whenn < n′.
To study the magnetized CBG in its total quantum region, we now introduce theT = 0 K

distribution function into the various response functions given above. AtT = 0 K, all
the bosons are in the lowest energy level and hence,F(n, pz) = 2πNδn,0δpz,0/β

2V 2/3.
Introducing this distribution function into the longitudinal dielectric response function given
by equation (1) yields

εL(q, ω) = 1+ mω
2
p

q2
[a−1
+ 8(1, 1+ a+/b;−z∗)− a−1

− 8(1, 1+ a−/b;−z∗)] (10)

wherea± = h̄ω± h̄2q2
z /2m, b = h̄ωc and8(1, 1+ a/b; z) is a confluent hypergeometric or

Kummer function, which first appeared in the study by Witteet al [11] of the magnetized
relativistic CBG. This function will be referred to as the Bose–Kummer function, but as
mentioned earlier, it appears in the response theory of the magnetized DEG and is also
related to the incomplete gamma function. It should also be noted that due to charge
conjugationωc should be replaced by|ωc| for negatively charged bosons in all the response
functions given above.
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By inserting theT = 0 K distribution function into the response functions for right-
and left-circularly polarized modes, i.e. equations (3) and (4), one obtains

εr(q, ω) = 1− ω
2
p

ω2
+ ω

2
p

ω2

(
ωc

ω + ωc+ h̄q2/2m

)
(11)

and

εl(q, ω) = 1− ω
2
p

ω2
− ω

2
p

ω2

(
ωc

ω − ωc− h̄q2/2m

)
(12)

whilst the longitudinal dielectric function given by equation (5) becomes

ε(q, ω) = 1− ω2
p

ω2− h̄2q4/4m2
. (13)

Equation (13) represents the one-dimensional version of the field-free longitudinal dielectric
response function obtained by HF [5, 9]. The dispersion relation for longitudinal/plasmon
modes propagating parallel to the magnetic field can be obtained by setting this equation
equal to zero. As we shall see shortly, the same result will be obtained by putting
q⊥ = 0 in the general longitudinal dielectric response function given by equation (10).
For |ω ± ωc| � h̄q2/2m, equations (11) and (12) reduce to those for a classical electron
plasma in the cold-plasma limit [16].

Although the Bose–Kummer function does not appear when studying the propagation
of electromagnetic modes parallel to the magnetic field, it does appear when theT = 0 K
distribution function is introduced into the transverse response functions for analysing the
propagation of electromagnetic modes perpendicular to the magnetic field. Then one finds

ε1(q, ω) = 1+ mω2
p

h̄q2ω
[8(1, 1+ ν;−z∗)−8(1, 1− ν;−z∗)] (14)

ε2(q, ω) = 1− 2ω2
p

ω2
+ mω2

p

h̄q2ω

[(
1+ h̄q2

2mω

)2

8(1, 1+ ν;−z∗)

−
(

1− h̄q2

2mω

)2

8(1, 1− ν;−z∗)
]

(15)

ε3(q, ω) = 1− ω2
p/ω

2 (16)

and

εx(q, ω) =
mω2

p

h̄q2ω
[(1+ h̄q2/2mω)8(1, 1+ ν;−z∗)− (1− h̄q2/2mω)8(1, 1− ν;−z∗)]

(17)

whereν = ω/ωc.
It can be seen in the weakly magnetized limit, i.e.ωc→ 0, that not only doesz∗ become

large, but also the parameters of 1+ a±/b and ν in the Bose–Kummer function become
large. As stated in [17] existing asymptotic expansions did not cover this case adequately,
so a novel asymptotic expansion was sought, which could ultimately be used to yield the
already known field-free results. First, the Bose–Kummer function was expressed by means
of a Kummer transformation as

8(1, 1+ α;−z) = αe−zS(α, z) = e−z
∞∑
k=0

αzk

(k + α)k!
(18)
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where it isS(α, z) that is related to the incomplete gamma function. ThenS(α, z) was
re-cast into an integral representation and the method of expanding most of the exponential
as described in [18] was used in conjunction with a novel graphical technique to arrive at

S(α, x) ∼ ex
∞∑
k=0

0(k + 1)(α + x)−k−1ck(x) (19)

where theck(x) are new polynomials whose highest order inx is [k/2] or the greatest
integer less thank/2. In addition to general expressions for the coefficients of the three
lowest and three highest orders of theck(x), it has been found in [19] that equation (19)
is very accurate for|α + x| > 3. Here, however, we only need the first six polynomials,
which are:c0(x) = 1, c1(x) = 0, c2(x) = x/2!, c3(x) = −x/3!, c4(x) = x/4!+ x2/4× 2!
andc5(x) = −x/5!− x2/2× 3!.

If equation (19) is introduced into equation (1), then the longitudinal dielectric-response
function becomes

εL(q, ω) ∼ 1+ mω
2
p

h̄q2

∞∑
k=0

ωkcck(h̄q
2
⊥/2mωc)k!

(h̄2q4/4m2− ω2)k+1

×[(h̄q2/2m− ω)k+1+ (h̄q2/2m+ ω)k+1]. (20)

The dispersion relation for longitudinal modes or plasmons is found by puttingεL(q, ω)
equal to zero. By retaining only those terms up toω2

c and then carrying out a perturbational
analysis of the ensuing equation, one obtains

ω2 = ω2
p +

h̄2q4

4m2
+ ωc

(
3h̄q2
⊥

2m
+ h̄

3q4q2
⊥

2m3ω2
p

)
+ ω2

c

(
q2
⊥
q2

(
1+ 2h̄2q4

m2ω2
p

+ h̄4q8

2m4ω4
p

)

+3

4

h̄2q4
⊥

m2ω2
p

(
−1+ 4h̄2q4

m2ω2
p

+ 2h̄4q8

m4ω4
p

))
+ · · · . (21)

In the field-free limit, i.e.ωc → 0, equation (21) reduces to the result obtained first by
Foldy [4] and later by HF [5, 9]. It should be noted that Foldy’s definition ofωp is different
because it refers to a depleted ground-state occupation that arises from the Bogoliubov
approximation [2] as opposed to the RPA used here. An interesting feature of equation (21)
is that the weakly magnetized CBG behaves like a field-free CBG when the modes propagate
purely in the magnetic field direction, whereas the magnetic-field effects on plasmons are
strongest whenqz = 0.

The dispersion relations for circularly polarized modes propagating parallel to the
magnetic field are obtained by putting equations (11) and (12) equal to(qc/ω)2. For
the weak magnetic-field case, a perturbational approach for right-circularly polarized modes
yields

ω2 = ω2
T + ωcω

2
pf− + ω2

cω
2
pf

2
−

(
1− ω

2
pf−

2ω∗

)
+ · · · (22)

whilst for left-circularly polarized modes

ω2 = ω2
T + ωcω

2
pf+ + ω2

cω
2
pf

2
+

(
ω2

pf+
2ω∗

− 1

)
+ · · · (23)

whereω2
T = ω2

p + q2c2 and f± = (ωT ± h̄q2/2m)−1. Equations (22) and (23) represent
perturbations around the dispersion relation for transverse modes for the field-free case of
ω2 = ω2

T. This dispersion relation also applies to the ordinary mode, which is obtained by
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settingε3(q, ω) in equation (16) equal to(qc/ω)2. Thus, the ordinary mode is not affected
by the presence of a magnetic field atT = 0 K and like the circularly polarized modes, it
can only propagate when its frequency is greater than the plasma frequency.

It should also be noted that a low frequency mode can be obtained from the dispersion
relation for left-circularly polarized modes, which is

ω = h̄q
2

2m
+ ωcq

2c2

ω2
p + q2c2

. (24)

The above result is valid for those cyclotron frequencies satisfying the condition, 0< ωc <

ω − h̄q2/2m. This low frequency mode is the analogue of the helicon mode found in a
magnetized electron plasma [16] and is of interest because it means that photon propagation
can occur parallel to the magnetic field with frequencies significantly lower than both the
plasma and cyclotron frequencies.

Equation (11) has a resonance atω = ωc + h̄q2/2m where left-circularly polarized
photons are strongly absorbed by the system while for negative values of this frequency
equation (12) possesses a resonance. Furthermore, near cut-off frequencies the modes
have extremely large phase velocities and dissipation processes in the system become
insignificant. Modes with frequencies below the cut-off values do not propagate in a plasma.
For a field-free plasma the cut-off frequency of circularly polarized modes occurs at the
plasma frequency, which implies that a plasma is not able to support these modes below
the plasma frequency. Cut-off frequencies are found by solving

ω2
p

ω2
= ω ± ωc± h̄q2/2m

ω ± h̄q2/2m
(25)

where ‘+’ applies to right-circularly polarized modes while ‘−’ applies to left-circularly
polarized modes. By assuming thatωc is small, and carrying out a perturbational analysis
aroundω = ωp, one finds for left-circularly polarized modes that

ω = ωp

(
1+ ωc

2κ−
+ ω2

c

2κ2−

(
3

4
− ωp

2κ−

)
+ · · ·

)
(26)

while for right-circularly polarized modes one obtains

ω = ωp

(
1+ ωc

2κ+
+ ω2

c

2κ2+

(
3

4
− ωp

2κ+

)
+ · · ·

)
(27)

whereκ± = ωp± h̄q2/2m.
The dispersion relation for the extraordinary mode [16], often referred to as a hybrid

mode splits because its electric field consists of longitudinal and transverse components, is
given by

(qc/ω)2 = (ε1ε2− ε2
x)/ε1. (28)

The dispersion relation atT = 0 K is determined by introducing equation (19) into
equations (14), (15) and (17), which eventually yields

ψ

(
1− ω

2
p

χ

)
− A1ωcψ

χ3
− B1ω

2
cψ

χ5
+ C1ωcω

2

χ2

(
1− ω

2
p

χ

)
+ A1C1ω

2
cω

2

χ5
≈ 4z2

∗ω
4
cω

2ω4
p

χ4

(29)

where

χ = ω2− z2
∗ω

2
c ψ = ω2− ω2

p − q2c2 A1 = z∗ωcω
2
p(z

2
∗ω

2
c + 3ω2)

B1 = ω2
p

(
2z6
∗ω

6
c + 25ω2z4

∗ω
4
c + 20ω4z2

∗ω
2
c + ω6

)
and C1 = 2z∗ωcω

2
p.

(30)
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In the ωc → 0 limit, equation (29) possesses two branches. To obtainωc corrections for
the first branch, one must also assume thatz2

∗ω
2
c � q2c2 or q2 � 4m2c2/h̄2. Carrying out

a perturbational analysis then yields

ω2 ≈ ω2
T +

2z∗ω2
cω

2
pq

2c2

ω2
Tq

2c2− 3z∗ω2
cω

2
p

+ · · · . (31)

Thus, to zeroth order inωc, the first branch gives the same dispersion relation as the ordinary
mode. The second branch can also be found to first order inωc by a perturbational approach,
which gives

ω2 ≈ ω2
L +

(3ω2
L + z2

∗ω
2
c)z∗ω

2
c

ω2
p(q

2c2− z2∗ω2
c)+ 2z∗ω2

cω
2
L

+ · · · (32)

whereω2
L = ω2

p+ z2
∗ω

2
c, the field-free longitudinal dispersion relation obtained by Foldy [4].

The two branches, thus, exhibit the hybrid nature of the extraordinary mode.
The resonances of this mode occur, known as hybrid resonances, whenqc/ω is infinite

or whenε1(q, ω) = 0. However, one does not need to solve this equation, because under
resonance conditions, the mode is purely longitudinal. Thus, the transverse response function
ε1(q, ω) is equivalent to the longitudinal dielectric response functionεL(q, ω) with qz = 0
[12]. Hence, equation (21) withqz = 0 represents the condition that the extraordinary mode
turns into a purely longitudinal mode.

Cut-off frequencies for the extraordinary mode occur whenever the r.h.s. of equation (28)
equals zero. From the preceding material we expect to find that the cut-off frequency for
a weakly magnetized CBG will occur near the plasma frequency as in the field-free case,
but with an additional magnetic-field correction term. The cut-off frequency for a weakly
magnetized CBG atT = 0 K is obtained by setting the r.h.s. of equation (28) equal to zero.
To first order inωc, one obtains

(1− ω2
p/ω

2)(ω2− z2
∗ω

2
c)

3− A1ωc− C1ωc(ω
2− z2

∗ω
2
c − ω2

p) = 0. (33)

A perturbational analysis near the plasma frequency yields

ω2 = ω2
p +

z∗ω2
cω

4
p(3ω

2
L + z2

∗ω
2
c)

(ω2
p − z2∗ω2

c)
3

+ · · · . (34)

Sinceω2
p � z2

∗ω
2
c, one can put the first-order term in equation (34) equal to 3z∗ω2

c.
Finally, the static screening potential for a test-chargeQ immersed in a plasma is given

by

V (r) = (2π)−3
∫

dq exp(iq · r) 4πQ

q2εL(q, 0)
. (35)

To first order inωc, equation (20) yieldsε(q, 0) ∼ 1+A4/q4+Eq2
⊥/q

8 whereA2 = 2mωp/h̄

andE = 8m3ω2
pωc/h̄

3. Thus the screening integral becomes

V (r) = Q

π

∫ ∞
−∞

dqz

∫ ∞
0

dq⊥
q⊥(q2

⊥ + q2
z )

3 exp(iqzz)J0(ρq⊥)
(q2
⊥ + q2

z )
4+ A4(q2

⊥ + q2
z )

2+ Eq2
⊥
. (36)

Now if we put qz = q cosθ , then dq⊥dqz = qdqdθ and the screening integral can be
evaluated by employing a combination of analytic techniques, whereupon one obtains

V (r) ∼ Qe−Aλ−r/
√

2

[
f (z, r) cos

(
Aλ+r√

2

)
+ g(z, r) sin

(
Aλ+r√

2

)]
+Qωc(r

2− 3z2)

ωpA2r5
e−
√

2mωc/h̄r (37)
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where λ± = 1 ± ωc/4ωp, f (z, r) = 1/r − (γ /√2Ar2)(
√

2 + 1 + A2z2/4 − 3z2/r2 −
3
√

2z2/Ar3), g(z, r) = (−γ /4r)(1− √2Az2/r + 2
√

2/Ar − 5z2/r2 − 6
√

2z2/Ar3), and
γ = ωc/ωp. This potential gradually becomes isotropic for larger, providedz 6≈ r. In the
limit as ωc→ 0 this potential also reduces to the field-free result of

V (r) = Q

r
exp(−Ar/

√
2) cos(Ar/

√
2) (38)

which was obtained by HF in [5, 9]. Equation (38) is a peculiar result because irrespective
of the charge on the test particle, the potential alternates in sign over rings around the
particle, although it is damped rapidly.

To conclude, we have seen that the novel asymptotic expansion given by equation (19) is
able to transform the highly anisotropic expressions for the dielectric properties of a weakly
magnetized CBG into the forms for the isotropic system with weak field perturbations.
The results presented here are valid for high densities and strong magnetic fields provided
|ωc/ωp| < 1 and hence, are not necessarily restricted toT = 0 K. In the future this powerful
asymptotic expansion will be employed in a study dealing with the response of the more
important weakly magnetized DEG, in both two and three dimensions.
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